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Abstract

The growing use of Internet-of-Things devices in electric power systems has resulted in

increased complexity and flexibility, making monitoring power usage critical for effective sys-

tem maintenance and detecting abnormal behavior. However, traditional anomalous power

consumption detection methods struggle to handle the vast amounts of data generated by

these devices. While deep learning and machine learning are effective in anomaly detection,

they require significant amounts of training data collected on centralized servers. This cen-

tralized approach results in high response time delays and data leakage problems. To

address these challenges, we propose an Autoencoder-based Federated Learning method

that combines the AutoEncoder and Federated Learning networks to develop a high-accu-

racy algorithm for identifying anomalies of power consumption data in distributed power sys-

tems. The proposed method allows for decentralized training of anomaly detection models

among IoT devices, reducing response time and eventually solving data leakage issues.

Our experimental results demonstrate the effectiveness of the FLAE method in detecting

anomalies without needing data transferring.

1 Introduction

As technology advances and people find new ways to utilize power in their daily lives, power

consumption in households is increasing exponentially. To address this challenge, smart grids

are using data collected by Internet-of-Things (IoT) devices to optimize various outcomes

such as cost reduction, safety awareness, and prevention of equipment downtime. The integra-

tion of smart devices has led to a reduction in the number of required devices and, conse-

quently, a decrease in the volume of corresponding data streams. However, power system

companies still struggle to monitor all their devices simultaneously, resulting in unnecessary

power wastage. Thus, it is crucial to detect unusual power consumption to avoid unnecessary

operational expenses and improve efficiency.

Anomaly detection in power consumption data has become crucial for tenants to identify

abnormal consumption patterns, detect malfunctioning electrical appliances, and reduce

power consumption costs. It involves identifying anomalous observations that deviate from
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the typical pattern in a given dataset [1]. With the advent of IoT applications, detecting abnor-

malities in IoT time-series data has gained significant importance [2, 3]. For instance, a light

bulb’s power consumption pattern varies based on the time of day and the availability of natu-

ral light in residences. Thus, high power consumption levels during working hours may be

anomalous, while the same during nighttime hours may not be anomalous. Anomalies are

classified into three types: point anomalies, contextual anomalies, and collective anomalies. A

point anomaly occurs when a data point is excessively high or low compared to others. In this

paper, we define abnormal power consumption as the difference between predicted and actual

power consumption that exceeds a threshold during a given period, indicating that the current

period’s power consumption is anomalous. Therefore, the primary objective of this paper is to

identify point anomalies in power consumption data.

The early works on prediction and detection of anomalies in power systems have mostly

focused on centralized approaches, where data is collected from various sources and analyzed

in a centralized location. Wadi et al. [4] employed machine learning techniques to detect faults

in power system networks. However, the primary limitation of their approach was that it relied

on supervised learning during the training process, which necessitated the use of labeled data

containing abnormal instances. Labeled datasets are critical in supervised learning to train

machine learning models. However, producing these datasets requires expertise to ensure both

the quality and quantity of data. Li et al. [5] proposed a novel approach for centralized water

leak detection by utilizing acoustic emission sensor data from municipal pipeline systems.

Their method leverages a classifier based on artificial neural networks to identify anomalies in

the sensor data, which can indicate the presence of water leaks in the pipeline system. The limi-

tation of thier work is the reliance on a centralized approach. Zhang et al. [6] proposed an

approach to detect abnormalities in a power consumption dataset by employing a transformed

K-means algorithm. The algorithm clusters the data into groups based on their similarity, and

any data points outside of these clusters are identified as anomalies. While the transformed K-

means approach is an effective method for anomaly detection, the centralized dataset approach

may not be suitable for real-time anomaly detection applications, as the data must be collected,

processed, and analyzed in a centralized location. This could potentially increase data transfer

bandwidth and expose sensitive information about sensors, leading to privacy breaches.

In a centralized system, abnormalities in devices are detected using a server-based model

that gathers training data from each device via gateways and stores it on a centralized server.

Hence, centralized servers are often challenging to maintain due to their vulnerability to cyber-

attacks, which raises concerns about data privacy. Additionally, transmitting data to a central-

ized server requires high bandwidth. To address these concerns, decentralized learning

solutions have been developed. These solutions enable only locally trained models to be trans-

mitted to a centralized server, thereby allowing all private data to remain local. One such solu-

tion is Federated Learning (FL), which is an emerging and robust decentralized approach to

training machine learning models collaboratively on local devices, using decentralized datasets

[7–12]. This approach enables data to remain at the source of its generation, resulting in

reduced data transmission costs [13]. While FL presents significant privacy advantages over

centralized data collection, it can be challenging to integrate into IoT systems due to several

factors. The primary challenge is device communication, dataset, and model heterogeneity,

which can hinder the effectiveness of the FL process. To address heterogeneity issues in IoT

environments, the authors in [14] have proposed personalized FL methods to mitigate the neg-

ative effects of heterogeneity. However, one significant challenge is the gradient leakage prob-

lem, as model gradients must be shared and aggregated on a central server. This presents

various cyberattack techniques to intercept gradient data packages. To address this, data leak-

age can be mitigated through the use of FL with secure multi-party computation,
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homomorphic encryption, and differential privacy techniques. As a result, FL plays a critical

role in (1) detecting anomalous devices, (2) reporting abnormal devices, and (3) preventing

privacy leakage from devices.

In this paper, we propose a power consumption anomaly detection model that integrates

the autoencoder (AE) network with the unique features of FL. This approach, which we refer

to as the FLAE method, leverages the strengths of both models to improve power consumption

anomaly detection. Our research makes the following contributions:

• We adopt the autoencoder which is a type of neural network that is well-suited for anomaly

detection. The autoencoder network is trained to reconstruct normal data, making them

effective at identifying anomalies that deviate significantly from normal data patterns.

• We introduce a decentralized approach for power consumption anomaly detection that uti-

lizes the combination of federated learning framework with the autoencoder network. Our

proposed approach allows IoT devices to train a single anomaly detection model collabora-

tively using their own datasets locally to identify a wider range of anomalies and improve

overall accuracy.

• We implement a dynamic threshold selection strategy that utilizes the peak over threshold

algorithm for the automatic selection of an appropriate threshold based on the data distribu-

tion, ensuring that anomalies are accurately detected while minimizing false positives.

• We showcase the effectiveness of our proposed framework by conducting experimental

comparisons with state-of-the-art models. Moreover, we demonstrate the efficiency of the

FLAE method in both homogeneous and heterogeneous configurations of power consump-

tion datasets.

This paper is organized as follows. Section 2 provides background information about

anomalies in time-series data and FL. Section 3 provides an overview of work related to anom-

aly detection in both machine learning and FL. Section 4 describes how the AE and FL are

combined in the proposed FLAE method, the problem statement, the data preprocessing tech-

niques, and the proposed anomaly detection architecture. Section 5 discusses the experimental

setup and reports the performance of the state-of-the-art models and our proposed FLAE

method. Finally, conclusions are presented in Section 6.

2 Background

2.1 Anomaly in time-series data

Anomalies in time-series data refer to data points that exhibit abnormal behavior and signifi-

cantly deviate from the expected pattern of the previous timestamp. These anomalies may

arise from different factors, including outliers, measurement errors, or sudden changes in the

underlying process. They can pose a challenge in data analysis and must be carefully identified

and addressed to avoid misleading insights and decisions. Depending on the application,

anomalies can be referred to as novelties, deviants, or outliers [15]. In this paper, the term

anomaly will be used for consistency. According to [1], there are three main categories of

anomalies related to time-series data, i.e., point anomalies, contextual anomalies, and collec-

tive anomalies.

1. Point anomalies is occurring when a singular data point is significantly different from the

rest of the dataset in terms of its properties or characteristics.

2. Contextual anomalies are a type of anomaly where a data instance is considered anomalous

only in a particular context or setting, while it may be entirely normal in other contexts.
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3. Collective anomalies refer to a type of anomaly where a group or a set of related data

instances display anomalous behavior or characteristics within the context of the entire

dataset.

2.2 Federated learning

FL is a distributed machine learning technique introduced in [16, 17]. FL enables a model to

be trained using local data on decentralized edge devices without the need to exchange this

data between devices. This is achieved by allowing each device to perform the necessary train-

ing locally. After performing local training, the device transmits its results to a central server.

Many devices participate in the training process, contributing model updates to the server.

These updates are then aggregated using the Federated Averaging (FedAvg) algorithm, which

produces an improved global model.

The FedAvg algorithm [16] works by randomly selecting a subset of devices each round,

and calculating the average weight of their local models. This average weight is then used to

generate a weighted average of all device model results, which is transmitted to the server.

FedAvg is an effective optimization algorithm for training loss and is also robust against non-

IID distributions and unbalanced data since each device’s data differ and may not follow the

same distribution. FL provides several key benefits including the following critical advantages.

• Training time reduction: Parallel calculations of gradients are performed on multiple

devices, which reduces calculation times significantly.

• Inference time reduction: Each device has its own copy of the model; thus, predictions can

be made extremely quickly without dependence on server queries.

• Privacy reservation: A major privacy risk can occur when sensitive information is uploaded

to the server; thus, storing data locally helps end users maintain privacy.

• Ease of collaborative learning: Rather than collecting a single massive dataset to train a

model on the server, FL allows the end users to train the model in a local manner.

3 Related work

Anomaly detection in time-series data is a complex task, and many studies have investigated

power consumption data prediction and abnormality detection because this information is

critical in terms of realize effective and efficient power systems.

3.1 Machine learning anomaly detection

In the early stages of deep learning, many methods [4, 6, 18–20] are used and produce signifi-

cant results in detecting abnormalities in data. Wadi et al. [4] used machine learning-based

techniques to detect faults in power system networks. The methods used were the principal

component analysis and one-class support vector machine techniques. These methods

obtained an accuracy of 79.28% to 79.84% and an ROC score of 0.67 to 0.73. However, their

methods used supervised learning during training, which heavily depends on the anomalous

labels in the dataset. Mao et al. [6] introduced the isolation forest (iForest) algorithm to detect

abnormalities in power consumption data. This algorithm is used to detect anomalous data

points. The iForest algorithm is used to detect data points that are inconsistent with other data

patterns. These data points are then marked as abnormal. However, the iForest algorithm

requires a large amount of training data to be able to detect anomalous data points accurately.

Additionally, if the algorithm is not optimized correctly, the implementation can take a long
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time and require a lot of computer resources. Zhang et al. [20] proposed a method for predict-

ing power consumption and detecting anomalies that combines the Transformer model with

the K-means clustering approach. There are two steps to the proposed method: predicting

anomalies, and detecting them. A transformer model is used to predict power consumption,

and K-means clustering is used to improve the accuracy of the predictions. Anomalies are

then detected by comparing predicted and actual values. The majority of related research is

constrained by the collection of training data through a centralized server. This approach can

result in privacy breaches and increased computational resources required for training. Thus,

new approaches are necessary to overcome these limitations.

3.2 Federated learning anomaly detection

The FL was initially proposed by Google researchers [16] for tasks such as image classification

and next word prediction. With its increasing popularity, it can also be utilized for anomaly

detection. Sater et al. [21] proposed FL in a stack LSTM model to train time-series IoT data in

smart building. The FL approach has proven to be efficient for demonstrating the performance

of models on datasets that resemble the actual data generated by a electric smart building. To

train their model, the authors utilized the FedAvg algorithm, repeating the process until the

model achieved convergence or the maximum number of training rounds was reached. In the

training process, data was collected from multiple heterogeneous devices to tackle the com-

mon challenges faced by IoT devices. However, this method demanded significant computa-

tional resources and time to enable effective training and real-world applications.

Consequently, from an IoT hardware perspective, LSTM models are generally considered inef-

ficient. Ayed et al. [22] found that FL is feasible for network-based intrusion detection. The

goal of their study was to distinguish between normal and abnormal network traffic behavior

by analyzing network traffic data. They proposed a FL algorithm that is resistant to anomalies

caused by malicious adversaries. The algorithm is able to maintain performance levels even

when confronted with new and unknown attacks. The proposed approach used a state-of-the-

art dataset and simulated its distribution over a set of clients. Their experimental result show

that this method is successful in identifying security breaches. Nguyen et al. [23] propose an

anomaly detection system that uses FL to detect compromised IoT devices by aggregating

anomaly detection profiles. To their extensive evaluation, their proposed system is highly effec-

tive (95.6% detection rate) and fast at detecting devices compromised by the infamous Mirai

malware.

4 Methodology

In this section, we delve into the time-series problem and explore preprocessing techniques for

time-series data. We then introduce the FL architecture which utilizes the AE network to

address time-series challenges. We also examine anomaly detection and its threshold selection

strategy, allowing for a comprehensive understanding of the method.

4.1 Problem statement

A time-series contains a sequence of data points collected at equally spaced timestamps involv-

ing multiple variables [24]. In this study, we only focused on a multivariate time-series defined

as follows:

T ¼ fx1; . . . ; xTg ð1Þ

where T is the length of T , and each data point xt is collected at a specific time t. An input of

PLOS ONE Enhancing anomaly detection in distributed power systems using autoencoder-based federated learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0290337 August 18, 2023 5 / 18

https://doi.org/10.1371/journal.pone.0290337


multivariate time-series is denoted x 2 Rn�k
, where n is the maximum timestamp length, and k

is the number of input features. In the anomaly detection task, given the time-series input T to

identify an unseen observation T̂ , we must predict y ¼ fy1; . . . ; yT̂g where yt 2 {0, 1} indicates

whether the data point at tth timestamp is an anomaly. The number of the unseen observation

T̂ and the normal set of test data T differ is measured using an anomaly score, which is com-

pared to a threshold to obtain a corresponding anomaly label.

4.2 Data preprocessing

In this study, we applied two data preprocessing techniques, i.e., noise reduction and normali-

zation, and these techniques are described in detail in the following.

4.2.1 Noise reduction. We used the Savitsky-Golay filter to reduce noise in the raw

sequence before inputting it to the anomaly detection models [25]. This filter uses least-squares

polynomial fitting, which is a low-pass filter that replaces each value in the series with a new

value obtained from a polynomial fit. The general expression for the filter is as follows:

gi ¼
Xþm

i¼� m

ci �
fiþ1

N
ð2Þ

where fi is the original time-series data, gi is the smoothed value which is a linear combination

of ci and fi, ci is given as the polynomial of certain degree maintains higher values, and N is the

convoluting integer which is equal to the smoothing window size comprising (2m+1) points

[26].

4.2.2 Normalization. We normalized the time-series data using the min-max transforma-

tion formula to make the model more robust. All of the features will be transformed in the

range [0, 1]. This scaling will distort the original distribution for the dataset. To model the

dependence between data point xt at the current timestamp and the previous ones, we define a

window of length K at time t as follows.

Wt ¼ fxt� Kþ1; . . . ; xtg ð3Þ

We convert time-series T into a sequence of window W = {W1, . . ., WT} to be used as the

training input and Ŵ as the test time-series data. Here, rather than predicting the anomaly

label yt for each input window Wt directly, we need to calculate the anomaly score st for this

window [27]. The goal of the anomaly detection problem is to use anomaly scores st for the

previous windows to calculate the threshold value D. The input window is labeled as anoma-

lous if yt = 1(st� D). The anomaly score is the measurement of how different the original

input window is from the reconstructed input window. It is calculated by taking the deviation

between the two.

4.3 AutoEncoder model

An AE is an unsupervised learning technique proposed by Hinton and Zamel [28] that com-

prises an encoder E and decoder D. Here, the encoder maps input X to a set of latent variables

Z. In contrast, the decoder maps the latent variables Z back into the input space as a recon-

struction R, as shown in Fig 1. The deviation between the original input X and reconstruction

R is referred to as the reconstruction error, which is defined as follows:

LAE ¼ kX � AEðXÞk
2 ð4Þ

PLOS ONE Enhancing anomaly detection in distributed power systems using autoencoder-based federated learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0290337 August 18, 2023 6 / 18

https://doi.org/10.1371/journal.pone.0290337


where

AEðXÞ ¼ DðZÞ Z ¼ EðXÞ ð5Þ

and k � k2 denotes L2-norm.

The AE-based anomaly detection uses the reconstruction error as the anomaly score

attempting to recreate the original data after a nonlinear compression process. Here, the net-

work is trained using only normal data to learn all necessary characteristics and the relation-

ships among its input features. During the model inferencing, the network reconstructs the

normal sequences while failing to reconstruct the abnormal sequences. The AE network is

used to detect anomalies on each local device. Training is conducted with the preprocessed

data sequences and the pre-trained model is utilized to detect anomalies during inference.

4.4 Federated learning

In traditional distributed machine learning, central server data aggregation can pose issues like

increased computational costs, and high network bandwidth, especially when dealing with IoT

device data [9, 29]. To address these challenges, we propose the privacy-preserving FLAE net-

work. It consists of two components: the server side, responsible for sharing and updating the

global model, and the client side, comprising multiple devices with power consumption infor-

mation. Our network enables training a global model while keeping the training dataset on

local devices. In the following sections, we discuss the FL architecture and aggregating process

in detail.

4.4.1 Federated learning architecture. Here, we describe the FL architecture. Assume

that there are K devices, each of which has a private dataset Dk, where k = 1, . . ., K. The data

Dk of the Kth devices are not shared with the server, in contrast to traditional distributed

Fig 1. Architecture of the AE network. An AE comprises three components: the encoder, the latent space, and the decoder. Here, the encoder transforms

the input data to an encoded representation, the latent space is a representation of the compressed knowledge of the input data, and the decoder

reconstructs the input data from its encoded form.

https://doi.org/10.1371/journal.pone.0290337.g001
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learning processes that collect and use all local data D ¼ [K
k¼1

Dk from all devices to train a

model [21]. For every device involved in the training process (also referred to as clients), the

data preprocessing stage is exactly the same as that describe for the local training. The main

building blocks of this proposed method are the local training, server aggregation, and global

model broadcasting, as shown in Fig 2.

Local training. The device data consist of power consumption data recorded at regular

intervals and are commonly affected by noise caused by faulty devices. To address this issue,

the data is preprocessed by splitting it into training data, testing data, and labels. Labels are

manually added by doubling the testing data value and designating them as anomalies. The

preprocessed training data is then used to train an autoencoder (AE) model, which is subse-

quently used to evaluate the unseen test data. The reconstruction loss is used to adjust the

threshold value, where any value above the threshold is considered an anomaly. Each device

then sends its pre-trained model weights to the server for aggregation, as illustrated in Fig 3.

Server aggregation. The server aggregator represents a robust cloud server with rich com-

puting resources. It serves two fundamental functions in the context of distributed machine

learning, namely (1) initializing and distributing the global model to all participating devices,

and (2) collecting the model weights contributed by the client devices. The training process

between the server and the clients takes place in rounds, during which the server aggregates

the local model weights using the Federated Averaging (FedAvg) algorithm. This iterative

approach enables the global model to be updated while preserving the privacy and security of

the clients’ data [13]. The training process is repeated until the global model reaches a state of

convergence, indicating that it has achieved optimal performance.

Fig 2. Architecture of the anomaly detection model using the proposed FLAE. When the FL process is initiated, all devices begin training

simultaneously. Here, each device sends its weights to the global server, which then uses the FedAvg algorithm to aggregate the received weights. The global

server then sends the aggregated weight back to each device and training continues.

https://doi.org/10.1371/journal.pone.0290337.g002
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Global model broadcasting. Once the server has updated the model weights, it broadcasts

the updated model to each device. This ensures that every device receives the latest global

model and is able to use it for improved accuracy in anomaly detection. Each device replaces

its local model’s weights with the updated global weights to initiate a new round of training.

This process is essential to keep all the devices in sync and maintain a consistent global model

across the network.

4.4.2 Federated averaging algorithm. Federated optimization is built from stochastic gra-

dient descent (FedSGD), which can be applied to the federated optimization problem, where a

single batch gradient calculation is performed per round of communication [30]. Note that

this technique is computationally efficient; however, it requires large numbers of training

rounds to produce an effective model. As mentioned previously, FL first chooses C fractions of

the clients in each round in order to calculate the loss gradient over all data stored by the

selected client devices. The goal is to minimize the global model loss function on all distributed

datasets.

In a typical implementation of FedSGD with C = 1 and a fixed learning rate η, each client k
computes the following:

gk ¼ rFkðwtÞ ð6Þ

where

Fk wð Þ ¼
1

nk

X

i2Dk

fi wð Þ ð7Þ

where wt represents the model weights in communication round t, Dk is a set of data points on

client k, and nk is the size of the dataset on client k. The average gradient on each client local

data at the current model wt, and then the central server aggregates these gradients and applies

Fig 3. Overview of the entire process of the local AE model, from data preprocessing to anomaly detection. The dataset is split into training data,

testing data, and label data. Label data are added manually by doubling their value. Once the model is trained, the MSELoss is calculated to define the

threshold as the reconstruction error of the training data to detect anomalies. If the loss is greater than the threshold, the datapoint is labeled as an anomaly.

https://doi.org/10.1371/journal.pone.0290337.g003
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the following update:

wtþ1  wt � Z
XK

k¼1

nk

n
gk ð8Þ

Here,
PK

k¼1

nk
n gk ¼ rf wtð Þ; thus, an equivalent update is given by 8k;wk

tþ1
 wt � Zgk:

wtþ1  
XK

k¼1

nk

n
wk

tþ1 ð9Þ

where wk
tþ1

is the model weights in communication round t on client k. Each client performs

one step of gradient descent on its own local data. The server then takes the weighted average

of the resulting models. As a result, we can add more computation to each client by iterating

the local update multiple times prior to performing the averaging step:

wk  wk � ZrFkðwkÞ ð10Þ

This minor modification results in the FedAvg algorithm. Here, there are three parameters

that control the amount of computation, i.e., C, (the percentage of clients that calculate on

each round), E (the number of training iterations each client runs on its local dataset in a

round) and B (the size of the local minibatch used for client updates).

4.5 Anomaly detection

4.5.1 Anomaly score. In the context of multivariate time-series data analysis, we calculate

the anomaly score for each observation by employing a comprehensive approach. Specifically,

the anomaly score is defined as a measure of deviation from the expected behavior. The anom-

aly score is determined by the following equation.

s ¼
1

N

XN

i¼1

kX � AEðXÞk2 ð11Þ

where the loss function, kX − AE(X)k2 is the amount of error in the reconstruction of the AE

in the compression network. The reconstruction probability is used as the anomaly score in

our model. A low score means the input X can be well reconstructed. A higher score indicates

that the input is more likely to be anomalous. The next subsection describes how to automati-

cally select the anomaly threshold value.

4.5.2 Threshold selection strategy. As is common in previous studies [27, 31–33], our

study defines the anomaly threshold following the peak over threshold (POT) principle to

select the threshold automatically and dynamically [34]. The basic concept of POT is to fit the

data distribution by a generalized Pareto distribution and identify the appropriate extreme

value to determine threshold values dynamically. Once we have the anomaly scores for a given

timestamp for each dimension si, we label the timestamp as anomalous if this score is greater

than the threshold.

5 Evaluation

5.1 Experimental setup

We provide a thorough performance analysis of the proposed FLAE method using power con-

sumption datasets. We start by describing the evaluation metrics employed to assess the effec-

tiveness of our method. Additionally, we discuss in detail the selection of experimental

hyperparameters for our model. By conducting a rigorous experimental setup, we demonstrate
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that our method achieves accuracy levels that are comparable to state-of-the-art methods, vali-

dating its effectiveness.

5.1.1 Dataset. We conducted a thorough analysis using a publicly accessible dataset of

household power consumption, which can be found at https://doi.org/10.24432/C58K54 [35].

This dataset comprises multivariate time-series data that chronicles the patterns of electricity

usage within a single household over a four-year period. In order to enhance the data’s man-

ageability, we converted the raw dataset into an hourly format. This modification substantially

decreased the quantity of records, with each hourly entry encapsulating an aggregation of the

original data for that specific hour. To simulate a distributed power system environment, we

partitioned the transformed dataset into subsets and distributed them among six clients. Each

client received approximately 6,000 records and acted as a power system emulator, actively

participating in the collaborative training process. Following the collaborative training phase,

we evaluated the resulting global model by testing it on the entire dataset, which encompasses

all 36,000 records. The primary aim of this evaluation was to gauge the accuracy of the FLAE

method in identifying anomalies within the data on household power consumption.

5.1.2 Evaluation metric. We conducted a thorough evaluation of the proposed FLAE

method’s performance using widely used evaluation metrics, namely precision (P), recall (R),

and F1-score (F1), and their respective formulas are presented below.

P ¼
TP

TP þ FP
R ¼

TP
TPþ FN

F1 ¼ 2 �
P � R
P þ R

ð12Þ

where true positive, true negative, false positive, and false negative are denoted as TP, TN, FP,

and FN, respectively. The number of appropriately detected anomalies is referred to as the TP,

and TN is the number of cases in which the model correctly predicted a normal sequence. FN

is the number of normal data that are inaccurately labeled as anomalies, and FP is the number

of incorrectly predicted abnormal sequences as normal. We use commonly used metrics to

evaluate the performance of all models. P is the percentage of correct positive predictions to

the total predicted positives, R is the ratio of correct positive predictions to the total positives

examples, and F1-score is a weighted average of precision and recall, respectively. Note that a

higher F1-score value indicates better performance in terms of the model’s ability to distin-

guish between anomalous and normal observations.

5.1.3 Model hyper-parameter. All experiments were conducted using the Python 3.7.13,

PyTorch 1.12.0 [36], and Flower federated framework 0.19.0 environment on a Windows

machine equipped with an Intel i7-12700F processor, 64GB of RAM, and an RTX 3060Ti

graphics card. The AE network consisted of two main components: the encoder and decoder.

The encoder network had four hidden layers, with dimension decreasing rates of 75%, 50%,

33%, and 25% respectively. The decoder had the same layer design as the encoder, but with an

increasing sequence. We set the input dimension to be 8, which is the number of dataset fea-

tures multiplied by the number of windows. The activation function inside the autoencoder

was set to the hyperbolic tangent function (tanh). The model was trained using the Adam [37]

optimizer with a learning rate of 0.0001 and a step scheduler size of 0.5 [38]. For this experi-

ment, we split the dataset into 80% for training and 20% for testing, with a sliding window

length of 15. We conducted 10 epochs of local model training, and a total of 20 training rounds

were processed for the global model. The FL server and all six FL clients were simulated on the

same machine to be trained in parallel, eliminating communication overhead. The perfor-

mance result demonstrates the impact of hyperparameter tuning on the model.
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5.2 Performance result

5.2.1 Evaluation of noise reduction. To evaluate the quality of the time-series data pro-

cessed by the SG filter, we conducted a thorough evaluation by comparing the Mean Absolute

Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) of data

samples with and without the SG filtering. The SG filter was employed to compare the dataset

between the state-of-the-art models and the proposed FLAE, owing to its remarkable effective-

ness. The results presented in Table 1 demonstrate that the SG filter significantly improved the

model’s performance, resulting in a reduction of the loss function by 15% to 25%. This indi-

cates that the model achieved a higher level of accuracy in predicting and detecting data abnor-

malities, as evidenced by the lower cost function.

5.2.2 Power consumption prediction. In this study, we evaluate the performance of the

proposed FLAE model on the power consumption dataset. Our results, illustrated in Fig 4,

demonstrate the high level of predictive accuracy achieved by the FLAE model. To visualize

the performance of our predictive model, we plotted the actual and predicted values for a

period of 30 days. The actual data is depicted using a purple line, whereas the red line repre-

sents the corresponding predicted values. The forecast data generated by our proposed FLAE

model closely aligns with the actual test data, as evidenced by the visual comparison.

5.2.3 Anomaly detection. We evaluated the effectiveness of the proposed FLAE approach

using a methodology similar to that employed in [20], wherein we manually inserted anomaly

points into the test dataset. We evaluate the anomaly detection of the proposed FLAE model

through comparison with state-of-the-art models. The chosen model includes AE, DAGMM

[39], OmniAnomaly [33], MAD_GAN [40], and USAD [41]. The model’s performance is eval-

uated using accuracy, precision, recall, AUC, and F1-score values [42, 43]. Table 2 shows a

comparison of the accuracy, precision, recall, AUC, and F1-score metrics obtained by the

state-of-the-art models and the proposed FLAE model on the power consumption dataset. The

F1-score, which represents the balance between precision and recall, is a crucial indicator of a

model’s effectiveness. Our proposed FLAE model achieves comparable performance in detect-

ing power consumption abnormalities to other state-of-the-art models.

Additionally, we used POT to automatically and dynamically generate thresholds from the

AE model reconstruction error to evaluate the test dataset. Data points with scores greater

than the threshold are considered anomalous. The total data length is approximately 7000 data

points plotted against the threshold value in the test data in Fig 5. The green line represents the

anomaly score, the red line indicates the threshold value, and the red dots represent abnormal

values.

5.2.4 Federated VS. centralized. The non-FL models depend on a centralized approach,

gathering training data on a central server. Although this method simplifies the training pro-

cess, it may result in increased data transfer bandwidth. In contrast, the FL technique in the

Table 1. MAE, MSE, and RMSE values of SG filter on the power consumption datasets.

MAE MSE RMSE

Original Filter Original Filter Original Filter

AE 0.039 0.036 0.003 0.002 0.054 0.044

DAGMM 0.042 0.036 0.004 0.002 0.063 0.044

MAD_GAN 0.030 0.022 0.002 0.001 0.044 0.031

OmniAnomaly 0.066 0.075 0.011 0.014 0.104 0.118

USAD 0.059 0.064 0.010 0.009 0.100 0.094

FLAE 0.050 0.042 0.004 0.003 0.063 0.054

https://doi.org/10.1371/journal.pone.0290337.t001
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FLAE model allows collaborative device training with local data storage. FL improves compu-

tational performance and convergence, providing accurate results without data sharing. Fig 6

compares FLAE and non-FL models on F1 and AUC scores for six devices. FLAE performs

well, accurately predicting anomalies in all devices. Non-FL models only detect anomalies in

three to four devices, lacking generalization due to limited training data. FL approaches enable

accurate anomaly detection across distributed devices. The proposed FLAE method learns

device characteristics by aggregating weights of local models. However, FLAE may perform

lower than non-FL models in some cases due to data quality, device participation, and FL algo-

rithm effectiveness.

5.2.5 Ablation study. An ablation study was performed to evaluate the effectiveness of the

proposed FLAE and non-FL models under different configurations. The F1-score, AUC, and

training time were evaluated for different window sizes and dataset training ratios. The miss-

ing points in the graphs comparison are very small values that make the graphs difficult to see.

Training set size. Fig 7 illustrates the variations in F1 score, AUC, and training time result-

ing from the application of the FLAE method on the dataset. Different training data ratios,

ranging from 20% to 80%, were considered. An analysis of the results shows that as the train-

ing data size increases, the prediction performance improves, but the training time also

increases. Upon analyzing, it was determined that utilizing 60% to 80% of the dataset for train-

ing optimizes a balance between maintaining the training time and achieving high model accu-

racy. It is important to note that the proposed FLAE model was not included in the ablation

study since the FL model does not have access to centralized data.

Fig 4. The actual power consumption values are compared with the predicted values obtained through the

proposed FLAE method.

https://doi.org/10.1371/journal.pone.0290337.g004

Table 2. Performance comparison of proposed FLAE with the state-of-the-art models on the power consumption dataset.

Power Consumption Data

Accuracy Precision Recall AUC F1

AE 0.9968 0.9896 0.9995 0.9976 0.9945

DAGMM 0.9973 0.9911 0.9995 0.9979 0.9952

MAD_GAN 0.9231 0.9959 0.7380 0.8684 0.8478

OmniAnomaly 0.9212 0.9873 0.7380 0.8670 0.8446

USAD 0.9970 0.9901 0.9995 0.9977 0.9947

FLAE 0.9968 0.9906 0.9995 0.9978 0.9950

https://doi.org/10.1371/journal.pone.0290337.t002
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Window size. We investigated the performance of the proposed by adjusting the dataset’s

sliding window size, as shown in Fig 8. The window size affects both the anomaly scores and

training times. For example, if the window is too small, then the local contextual information

is not represented effectively. In contrast, anomalies that are short in duration can go unde-

tected if the window size is too large. An enlargement in window size correlates with an

increase in training time. After evaluating the performance, it was determined that a window

Fig 5. Anomaly score of the active power and anomalies exceeding the threshold for 7000 hours. The green line

represents the anomaly score, calculated by measuring the deviation between actual and predicted values. The red dots

on the graph indicate anomalies that exceed the threshold value.

https://doi.org/10.1371/journal.pone.0290337.g005

Fig 6. Comparison between FL and non-FL models across six devices. Results indicate that the proposed FLAE model performed well across all six

devices, while non-FL models performed ineffectively in Device 5. This demonstrates the effectiveness of the proposed FLAE model in enabling accurate

anomaly detection across a distributed network of devices.

https://doi.org/10.1371/journal.pone.0290337.g006

Fig 7. The performance of the non-FL models trained on the power consumption dataset are evaluated for different dataset training sizes. The

F1-score and AUC score, as well as the training time, are reported for training sizes ranging from 20% to 100% of the full dataset.

https://doi.org/10.1371/journal.pone.0290337.g007
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size of 15 offers a reasonable balance between F1-score, AUC score, and training time. It is

important to note that the OmniAnomaly model was not included in the comparison graph as

it does not employ the sliding window technique.

6 Conclusion

With the growing demand for electricity resulting from population growth and technological

advancement, it has become increasingly crucial to accurately predict electric power consump-

tion and detect anomalies while ensuring efficient power distribution systems. In this paper,

we have proposed the FLAE method to detect anomalies in a power system’s time-series data

without needing to share data. Our proposed method utilizes the power of federated learning,

enabling multiple entities to collaboratively train a model on their respective local datasets.

The proposed FLAE method is comprised of a local and global model architecture. At the local

level, an autoencoder model is utilized to capture an individual’s IoT device data and extract

relevant features. At the global level, a model aggregator is employed to collect and aggregate

the local model weights, update the global model parameters, and share them with other

devices across the system. The proposed FLAE prediction and anomaly detection performance

was evaluated on a power consumption dataset with non-FL state-of-the-art techniques. The

results indicate that the FLAE model achieved a high level of prediction accuracy and per-

formed similarly to the non-FL state-of-the-art models. In addition, we conducted an ablation

study of the proposed FLAE method by evaluating its performance and robustness under dif-

ferent configurations by varying the sliding window size, ranging from 5 to 20, and the dataset

set ratio between 20% and 80%. The results of these experiments demonstrate that FLAE is

capable of detecting abnormalities in datasets across various configuration setups. In our

future research, we aim to conduct a comprehensive analysis of communication and computa-

tional power costs using real IoT devices to provide a more accurate representation of the sys-

tem’s performance. Additionally, we plan to delve deeper into the security of data, examining

various threat models and proposing countermeasures to mitigate security risks.
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