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Abstract 

 
The demand for immersive virtual reality (VR) experiences in high resolution has escalated, 
necessitating the development of advanced hardware (HW) capable of rendering images with 
high quality. To optimize the computational efficiency of delivering high-quality images, it 
becomes imperative to align with the constraints of the human visual system. The foveated 
rendering approach strategically allocates rendering resources by prioritizing the highest 
quality at the user's gaze point while reducing image quality in the periphery. In this paper, we 
propose an adaptive foveated display controller algorithm that leverages a grid-based strategy 
and seamlessly integrates with varying levels of detail to dynamically construct the foveated 
rendering technique. Our technique dissects images into grid cells while tracking the user's 
gaze through an eye-tracking sensor. The resolution is highest at the grid cell where the user 
is looking, gradually decreasing in nearby grid cells. This efficient approach reduces the need 
for heavy computing and effectively minimizes rendering latency, which is commonly found 
in non-foveated rendering methods. We conducted experiments using our proposed approach 
on several hardware. This setup allowed us to gather data from a range of interconnected 
sensors and run the adaptive foveated display controller algorithm. The results of our 
experimentation demonstrated a significant reduction in both latency and resource 
consumption, clearly outperforming the non-foveated rendering approach. 
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1. Introduction 

In recent years, the demand for high-resolution and pixel-dense displays to meet the diverse 
needs of various applications has been growing. For example, virtual reality (VR) technology 
has gained popularity in a wide range of industries such as military [1, 2], manufacturing [3, 
4], entertainment [5, 6], and more [7, 8]. Despite its widespread adoption, current VR 
technology faces several challenges. These include the demand for significant computational 
hardware (HW) resources and the persistent issue of high rendering latency, particularly when 
striving to render images to exacting specifications [9]. As VR devices aim for compactness 
in small size and the necessity for rendering high-quality images intensifies, the requirement 
for robust computational power in HW becomes indispensable. Unfortunately, such hardware 
often comes in large sizes, making it unsuitable for mounting on the user's head. This entails 
employing a rendering technique meticulously crafted to curtail resource usage. Strategies may 
include presenting images at diminished resolutions and utilizing selective portions of the 
image. By doing so, the hardware footprint is minimized, as only specific segments demand 
high processing power. This approach is commonly referred to as foveated rendering. 

Foveated rendering is a method designed to improve the efficiency of visual rendering 
processes by leveraging the unique characteristics and limitations of the human visual system 
(HVS). This technique concentrates computational resources on rendering the central area of 
the image in high quality, while simultaneously reducing detail and resolution in peripheral 
areas. As a result, foveated rendering not only significantly decreases the computational load 
and latency required for VR experiences but also diminishes the computational demands for 
rendering while maintaining high visual quality [10]. Consequently, compact and lower 
computational hardware can be further minimized in size, enhancing overall efficiency. 
Moreover, this advancement provides an additional layer of natural look and feel within virtual 
reality applications. However, Wang et al. [8] have noted three primary challenges for the 
practical adoption of foveated rendering: utilizing a perceptual model of the HVS to guide 
foveated rendering, applying different levels of rendering quality to different regions, and 
integrating foveated rendering techniques into established rendering paradigms for enhanced 
performance. By prioritizing rendering resources on the central area of focus, grid-based 
foveated rendering can help reduce latency in VR devices, leading to a smoother and more 
responsive user experience. This reduction in latency is particularly important for applications 
where real-time interaction is critical, such as gaming or virtual simulations. 

In the past decades, interest has been growing in the computer graphics community 
regarding the use of eye-tracking to enhance the accuracy and efficiency of foveated rendering. 
Early attempts at foveated rendering faced challenges due to limited hardware capabilities, 
compromising accuracy and increasing latency in eye-tracking systems [11]. Nowadays, high-
precision eye-tracking cameras offer highly accurate real-time tracking of eye movements. 
Additionally, a range of powerful and energy-efficient hardware is now available, providing 
more computational power to render high-quality images in real-time [12]. Despite these 
advances, significant challenges still need to be addressed, such as optimizing hardware design 
and algorithms for performance and ensuring low latency across the entire system. Acceptable 
latency depends on multiple factors, including the complexity of the application and user 
experience in the visual field. Hence, the development of algorithms that efficiently harness 
limited hardware resources is crucial for enhancing the popularity, compactness, availability, 
and affordability of VR devices. Furthermore, another potential limitation lies in the 
adaptability of display techniques across different VR platforms and hardware configurations. 
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In this study, we present an adaptive foveated rendering algorithm that leverages a grid-
based structure to partition the display resolution into smaller grid cells. This approach 
dynamically constructs and optimizes the foveated rendering technique by integrating variable 
levels of detail. The findings underscore a significant decrease in computational resource 
utilization, thereby enabling the design of more compact VR devices. Furthermore, the 
proposed algorithms are evaluated to yield substantial latency reduction and lower resource 
consumption. As a result, this capability is applicable across a wide range of applications, 
particularly those requiring precise object localization within a single grid cell, such as object 
detection and robotic hand manipulation. With this approach, only the focal point requires 
rendering at the highest available resolution. Surrounding areas can undergo a radial decrease 
in resolution. This strategic adaptation empowers the rendering algorithm to significantly 
reduce the volume of image or video data for processing. The main contributions of our 
research are as follows: 

• We introduce a system that responsively adapts to the size and position of the foveal 
region in real-time. Our technique allocates rendering resources based on the user’s 
gaze direction, thereby reducing the computational workload. 

• Using a level-of-detail technique, we render the foveal region with enhanced detail and 
resolution while rendering the peripheral regions at lower detail. The display area is 
segregated into a grid of rectangular cells, each representing a distinct level of detail 
and resolution. 

• We experimentally demonstrate that our foveated rendering approach achieves lower 
latency than standard rendering techniques. In addition, we investigate the correlation 
between grid size and latency, offering valuable insights into optimizing the grid size 
for various use-cases. 

The paper is organized as follows: In Section 2, we provide a concise overview of how 
foveated rendering leverages the HVS, present the general concepts of FPGAs, and review 
related works in the field. The system architecture of our proposed adaptive foveated rendering 
technique is presented in Section 3. In Section 4, we delve into the HW design and algorithms 
implemented on the embedded HW and FPGA, which were used to test our proposed algorithm. 
Section 5 outlines the experiments conducted to evaluate the system's performance, focusing 
on latency. Finally, in Section 6, we conclude the paper. 

2. Background and Related Works 

2.1 Foveated Rendering 
Rendering refers to a realistic or stylized image generated by a computer in either 2D or 

3D format. Producing a digital image requires various details of the scene such as the geometry, 
viewpoint, texture, lighting, and shading to be processed. The technical specifications of 
rendering methods depend on the application, level of realism, and computational resources 
[13]. Foveated rendering involves rendering an image with varying levels of detail based on 
the user’s gaze location. This technique reduces the rendering workload by lowering the image 
quality in the peripheral region while maintaining high image quality in the center of the image. 
Eye-tracking technology has become an essential component for enhancing the accuracy and 
efficiency of foveated rendering. However, challenges remain such as ensuring precise and 
reliable eye tracking and compatibility with different rendering techniques [14].  
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2.2 Field-Programmable Gate Arrays 
Field-programmable gate arrays (FPGAs) are integrated circuits characterized by high 

versatility and customizability, and they can be programmed and configured to execute 
specific tasks. Their HW flexibility, substantial computational throughput, and low energy 
consumption have contributed to their growing popularity in edge computing [15]. Because 
their architecture can be adapted to accommodate different algorithms, FPGAs provide a 
consistent and high computational throughput, which makes them suitable for accelerating 
various algorithms across a broad spectrum of edge computing applications [16]. 

2.3 Related Works 
Many studies have attempted to realize foveated rendering with low latency using different 

approaches. These attempts can be divided into two categories: multi-spatial resolution and 
level of detail (LOD).  
2.3.1 Multi-spatial Resolution 

Research on multi-spatial resolution can be further divided into two categories: perceptual 
research on foveated rendering, and rendering images or videos using the  foveated rendering 
techniques. Hsu et al. [17] introduced a regression model to analyze the relationship between 
image quality and foveated rendering parameters. They found that no single subjective 
assessment method was definitively superior, which indicates that further observations are 
needed to ascertain the extent of imperceptibility in foveated rendering. Kaplanyan et al. [18] 
proposed using generative adversarial neural networks to enhance the quality of images and 
videos in the peripheral region. Their method allows for real-time processing and compatibility 
with gaze-contingent head-mounted displays on contemporary HW. Deza et al. [19] examined 
a visual representation of the HVS and utilized this knowledge to encode features and train a 
convolutional neural network called Foveation-Nets for scene categorization. Foveation-Nets 
exhibited a distinct visual representation compared to networks without foveated input, which 
had a positive effect on its generalization, robustness, and perceptual sensitivity. Surace et al. 
[20] trained a generative network for foveated image reconstruction with the aim of 
maintaining perceived image statistics rather than natural ones by penalizing perceptually 
significant deviations in the output. 

2.3.2 Level of Detail 
Many researches utilized LOD-based techniques for foveated rendering by optimizing the 

LOD in different regions of an image depending on the user’s gaze position. Swafford et al. 
[21] conducted a user study to compare images generated by foveated rendering with an 
eccentric angle of 9° and reference images at full resolution presented in random order. The 
scene geometry was rendered at three LODs: high, medium, and low, where a lower level 
corresponded to a less tessellated grid for each tile. Their results showed that users perceived 
similar visual experiences between the foveated image with medium LOD in the peripheral 
region and the full-resolution reference image. Young et al. [22] proposed a LOD-based 
foveated rendering technique that also corrects gaze tracing errors or state parameters by 
adjusting the size and shape of the foveal region. Stafford et al. [23] employed a selective 
filtering technique to reduce visual artifacts in the peripheral region caused by lower LOD 
contrast. They then composited the foveated images for presentation. Lindeberg et al. [24] 
proposed a gaze-contingent depth-of-field tessellation method that applies tessellation to 
objects within the focal plane and gradually decreases the tessellation level as the applied blur 
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increases. Spagnolo et al. [25] designed a custom hardware architecture capable of 
reconstructing high-resolution images by treating the foveal region and peripheral region 
through accurate and inaccurate operations, respectively. However, one potential limitation is 
its focus solely on a specific custom hardware architecture, designed specifically for low-
power super-resolution processing in virtual reality wearable devices. Spagnolo et al. [26] 
presented a camera, algorithm, and accelerator co-designed lensless eye tracking system 
dubbed EyeCoD. To the best of our knowledge, this system is the first to provide a general, 
front-end eye tracking solution for AR/VR while satisfying the requirements for both high 
throughput and a smaller form factor. 

 

Fig. 1. The overall architecture of the adaptive foveated display control approach leverages sensor 
data to achieve precise gaze tracking, computation of grid numbers, and dynamic determination of 

foveal and blend areas. These pieces of information work synergistically to continuously inform and 
guide the foveated rendering process. 

3. Proposed Methodology 
In this section, we describe the overall architecture of the proposed adaptive foveated display 
controller technique and its algorithm in detail. 

3.1 Overall Architecture 
Fig. 1 illustrates the comprehensive architecture designed to implement the proposed 

adaptive foveated display controller approach. The proposed method consists of the following 
six steps: gaze location determination, grid number determination, foveal location 
identification, blend location identification, gaussian foveated blurring, and head movement 
speed condition, respectively. Furthermore, these steps are executed iteratively. Initially, a 
high-resolution depth camera captures an input image. Concurrently, the user's gaze location 
is determined using an eye-tracking camera, as outlined in Section 3.2. This allows for the 
precise estimation of the user's focal coordinates within the scene. Second, these gaze 
coordinates enable us to estimate object distances in the input image from the user's viewpoint. 
This is crucial for calculating the grid numbers to be displayed, based on the object's distance, 
as detailed in Section 3.3. Third, the foveal location is assigned to one of these grid cells, a 
procedure detailed in Section 3.4. Fourth, to enhance the user experience beyond mere foveal 
location identification, blended areas surrounding the foveal grid cell are determined, as 
elaborated in Section 3.5. Next, Gaussian foveated blurring is applied to the foveal and blended 
grid cells, as specified in Section 3.6. Finally, the resultant image is displayed based on the 
user’s head movement speed. If the head moves rapidly, a fully blurred image is presented, 
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capitalizing on the natural limitations of human visual acuity. Conversely, for stable head 
movements, the six-step process is executed. 

3.2 Gaze Location Determination 
In this study, our adaptive foveated display controller technique dynamically calculates the 

number of grids based on the user’s gaze location. The gaze data, received from the eye 
tracking camera, are represented by variables x and y corresponding to the horizontal and 
vertical positions of the gaze in the display, respectively. Variables x and y are mapped to the 
display frame, enabling accurate determination of the object-gazed distance and precise 
measurement of the visual fixation point on objects within the scene [27]. An image is 
segregated into three regions, particularly the foveal, blend, and peripheral regions. The foveal 
region position (i and j) is defined as follows: 

(𝑖𝑖, 𝑗𝑗) =  �� 𝑥𝑥
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
𝑚𝑚

� , � 𝑦𝑦
ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤
𝑛𝑛

�� , 𝑖𝑖𝑖𝑖 � 0 ≤ 𝑥𝑥 ≤ 𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤ℎ
0 ≤ 𝑦𝑦 ≤ ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑤𝑤                                      (1) 

where x and y represent the horizontal and vertical axes of the gaze location, respectively, 
width and height denote the fixed horizontal and vertical display resolution in pixels, 
respectively, of the image source, and m and n are the numbers of grid columns and rows, 
respectively. For example, suppose the foveal region position is i = 1 and j = 1 on a 4x4 grid. 
In that case, the portion of the image visible to the observer can be rendered at high resolution 
as illustrated in Fig. 2. This is a simplistic method aimed at enabling the loading of individual 
image regions without requiring specialized image rendering support for such functionality. 
By implementing a grid overlay on an image, it leads to spatial subdivision of foveated 
rendering. 

 
Fig. 2. The foveal region located at the i = 1 and j = 1, surrounded by blend and peripheral grids.  

3.3 Grid Number Determination 
The adaptive foveated display controller integrates three pivotal components: the input image 
source, head motion data, and eye-tracking data. The input image is displayed on the screen, 
and the user’s head movement is monitored to determine its speed. During rapid head motions, 
the resolution is reduced, as our visual perception struggles to discern fine details in such 
instances. Conversely, when head movement is gradual, the system precisely identifies the 
gaze coordinates, pinpointing the object location and distance in the display screen. Fig. 1 
depicts the comprehensive process wherein integrated sensor data is harnessed to detect and 
compute object-gaze distance, ultimately guiding the selection of the grid for presentation on 
the screen. The final rendering stage splits the display to multi-resolution rendering in high-, 
mid-, and low-quality grid cells. 
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To ensure the adaptability of the foveated rendering, it is crucial to dynamically adjust the 
number of grids based on the specific requirements of the scene and the user's gaze location. 
Determining the appropriate number of grids within our approach depends on the distance to 
the object being focused on. The depth camera sensor is utilized to determine the distance of 
the objects in the ideal range of 0 to 6000 millimeters. This involves the utilization of 
predetermined grid configurations, which are systematically aligned with object distances 
spanning ranges of 0~1000, 2000~3000, 3000~4000, 4000~5000, and 5000~6000 millimeters 
[28]. Corresponding to these ranges, specific grid sizes of 2x2, 3x3, 4x4, 5x5, 6x6, and 7x7 
are implemented, respectively [27, 29]. Considering the visual property where an object 
appears to decrease in size with increasing distance, applying a greater number of grids 
becomes strategically beneficial. 

 
 

Input:  S: head movement speed, 
        G: gazed point location (x,y), 
        D: object distance at gazed point 
Output: grids: total number of grids, 
        fovealX: position of foveal in X-axis, 
        fovealY: position of foveal in Y-axis 
 1: procedure determine_number_of_grids(D): 
 2:   if D > 0 and D <= 1000 then 
 3:     grids = 4 
 4:   else if D > 1000 and D <= 2000 then 
 5:     grids = 9 
 6:   else if D > 2000 and D <= 3000 then 
 7:     grids = 16 
 8:   else if D > 3000 and D <= 4000 then 
 9:     grids = 25 
10:   else if D > 4000 and D <= 5000 then 
11:     grids = 36 
12:   else if D > 5000 and D <= 6000 then 
13:     grids = 49 
14: end procedure 
15: procedure foveal_location(S, G, D): 
16:   if S is Fast then 
17:     grids = 1 
18:     fovealX = 1 
19:     fovealY = 1 
20:   else  
21:     width = 1280 
22:     heigh = 720 
22:     gazeX, gazeY = G[0], G[1] 
23:     grids = determine_number_of_grids(D) 
24:     cell_width  = width / sqrt(grids) 
25:     cell_height = height / sqrt(grids) 
26:     fovealX = gazeX / cell_width 
27:     fovealY = gazeY / cell_height 
28:   end if 
29: end procedure 

Fig. 3. Algorithm of grid-based foveated rendering. 

3.4 Foveal Location Determination 
Each grid setup presents diverse rendering levels in terms of detail and resolution. Grid cell 
sizes are calculated by dividing the fixed display dimensions (e.g., 1280x720 pixels) by the 
designated number of grids count. For instance, a 4x4 grid entails cells of 320-pixel width 
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(1280 divided by 4) and 180-pixel height (720 divided by 4). This division ensures each cell 
uniformly covers a proportionate display segment, guaranteeing a balanced allocation of 
rendering resources. By utilizing Equation 1, which considers the grid size, the gaze location, 
and the distance to the object being focused on, we can determine the foveal location. For 
instance, consider a scenario where the gaze location (x, y) is precisely identified at the pixel 
coordinates (330, 190) on the screen. By using Equation 1, the result of foveal location is 
determined at (1, 1). This signifies that the object under fixation precisely aligns with the grid 
cell positioned at coordinates (1, 1). This portion of the image takes on a high-resolution form, 
presenting a high-quality image. In another example, consider a 5x5 grid configuration. In this 
setup, each grid cell measures 256 pixels in width and 144 pixels in height. For example, if 
the gaze coordination is denoted by (x, y) = (200, 300), the resulting position of the foveal grid 
cell can be specified by coordinates (i, j) = (0, 2). To provide a step-by-step understanding of 
the foveal region extraction process, we utilize algorithm in Fig. 3, which outlines a procedure 
for determining the foveal location based on the user's gaze location and the predefined grid 
configurations. This algorithm encompasses the calculation of grid cell sizes, the 
determination of the foveal location, and subsequent rendering resource allocation. 

By focusing rendering resources solely on a single grid cell, grid-based foveated rendering 
can significantly reduce the computational load, improving overall performance and enabling 
smoother experiences, particularly in resource-intensive applications that require high-
resolution rendering. In areas where users are most attentive, grid-based foveated rendering 
can enhance immersion by ensuring that the most critical areas of the scene are rendered with 
higher fidelity, leading to a more realistic experience. However, grid-based foveated rendering 
may introduce visual distortions at the boundaries of the foveal region, where the transition 
between high and low detail areas occurs. This can potentially degrade the overall visual 
quality and negatively impact user experience, particularly if not implemented carefully. 

3.5 Blend Location Determination 
In our proposed method, we divide the levels of detail into three regions, simply locating the 
foveal location is insufficient. It is essential to render the areas surrounding the foveal location 
with a less refined quality compared to the foveal location itself. To identify the surrounding 
blend areas around the foveal location, we employ the following equation: 

𝑏𝑏𝑖𝑖,𝑗𝑗 = �𝑒𝑒𝑘𝑘,𝑙𝑙� − �𝑒𝑒𝑖𝑖,𝑗𝑗� 𝑖𝑖𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 𝑎𝑎𝑎𝑎𝑤𝑤 𝑎𝑎,                                           (2) 
where i - 1 ≤ k ≤ i + 1 and j - 1 ≤ l ≤ j + 1 and k and l are blended grid cells surrounding the 
foveal grid. 

The 𝑏𝑏𝑖𝑖,𝑗𝑗 denotes the set of blended cells when the foveal cell 𝑒𝑒𝑖𝑖,𝑗𝑗 is at a position of i and j. 
Equation 2 also upholds the following conditions: if k < 0, then k = 0; if k ≥ m, it is adjusted 
to k = m - 1.  Similarly, l must be 0 and n - 1 if l < 0 and  l ≥ n, respectively, when m and n are 
the number of columns and rows of the grid. For instance, we can get the blended cells in a 
scenario of a 5x5 grid, and where i = 0 and j = 2, as follows: 

𝑏𝑏0,2 = �𝑒𝑒0,1,𝑒𝑒1,1,𝑒𝑒0,2,𝑒𝑒1,2,𝑒𝑒0,3,𝑒𝑒1,3� − {𝑒𝑒0,2}                                (3) 
By excluding the foveal location from the blended areas, we can identify the surround 

blended areas and can dynamically adjust the number of grids and allocate rendering resources 
based on the user's gaze location. The regions beyond the blended boundaries, known as 
peripheral, will be rendered with a blur effect. The fovea and blended areas will be integrated 
together to provide the final rendering output. This adaptive foveated display controller 
technique optimizes the rendering process, ensuring a high-quality visual experience. 
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3.6 Gaussian Foveated Blurring  
We employed the Gaussian kernel method to selectively introduce blurring across the entire 
image while preserving sharpness exclusively at the foveal point. Additionally, a slight blur 
was applied to the blend locations, ensuring a seamless integration of the visual elements 
within the image. The Gaussian blur technique has been recognized as an invaluable tool for 
filtering images, particularly when they are characterized by the presence of significant noise 
[30]. Its efficacy stems from the manner in which it mitigates noise during the filtering process, 
relying mainly on the variance parameter of the Gaussian kernel. This dependency on the 
kernel's variance underscores its vital role in shaping the extent and quality of the blur. 
Moreover, the Gaussian blur technique contributes to a reduction in computational power 
required for image rendering [31]. This reduction is facilitated by the blurring effect, which 
imparts a smoother appearance to the image. Consequently, the computational demands are 
lessened, enhancing the overall efficiency of the rendering process and demonstrating the 
utility of this approach within our adaptive foveated display control system. 

4. Hardware Implementation 

To comprehensively evaluate the performance of a HW implementation of the proposed 
approach, we outline its key components such as software (SW), peripheral devices, and a 
communication interface. These elements enable the evaluation of our algorithm. 

4.1 Software Components  

The SW elements encompass a depth camera SDK, a Python-based graphical user interface 
(GUI) library, and a deep learning model. Within the depth camera SDK, both RGB and depth 
images are acquired to facilitate foveated rendering and calculate distances for object-gazed 
interaction. The embedded HW offers high performance and low power consumption for deep 
learning and computer vision tasks [32]. The GUI application allows user interaction and 
integrates with the depth camera SDK and deep learning model as shown in Fig. 4. Users are 
required to wear a cardboard-like headset equipped with an eye-tracking camera. During 
initialization, users need to open their eyes clearly to allow for the capture and tracking of their 
pupils. Once captured, users can then simply look around the display screen. 
 
 

 
Fig. 4. GUI developed by using the PyQT5, intel realsense SDK, and a deep learning model to 

accurately detect the pupil and gaze locations. The GUI offers real-time visualization of the object 
being gazed upon and its distance in millimeters. 
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4.2 Hardware Components  

The approach employs sensors such as a depth camera, eye-tracking camera, and gyroscope, 
linked to embedded HW for data collection and preprocessing. The depth camera measures 
distances at the gazed location in the display, enhancing accuracy with an infrared projector, 
whereas the eye-tracking camera utilizes a pre-trained deep learning model to locate the user's 
gaze in high-quality video [33]. Precision head movement speed detection is achieved with the 
gyroscope. Moreover, the FPGA development board combines programmable logic and an 
integrated ARM processor for custom HW acceleration to further process the data. These 
devices collectively ensure accurate and reliable data analysis. Fig. 5 shows the HW 
components and their connections. The Jetson Nano, powered by CUDA architecture, offers 
high-performance GPU computing suitable for image processing tasks. By offloading 
computationally intensive workloads from the Jetson Nano to the FPGA, it can improve the 
overall system performance and efficiency. 
 

 
Fig. 5. Connections among embedded HW: (a) Intel Realsense D435 sensor that captures images at a 
resolution of 1280×720 pixels. (b) A Day-and-night camera that captures high-quality images for eye 
location detection. (c) An MPU6050 gyroscope sensor that measures the angular velocity around an 

axis to capture head movement speed. 

4.3 Communication Protocols  

A communication protocol, such as the universal asynchronous receiver-transmitter (UART), 
facilitates data transmission between HW entities, enabling serially transmission of data one 
bit at a time. UART operates in simplex, half-duplex, and full duplex modes. AXI controller 
offers AXI4-lite for low-latency and AXI4-stream for high-speed data transfer [34]. Utilizing 
AXI, direct data transfer between device and memory is possible without CPU intervention. 
This enables efficient communication between PS and PL modules. 

5. Performance Evaluation 

In our study, we conducted an experiment to evaluate the efficacy of our proposed adaptive 
foveated display controller technique. This technique was rigorously evaluated across key 
parameters, including latency reduction, grid size impact, and HW resource consumption. 

5.1 Experimental Tools  

In our proposed approach, the experimental tools consist of components as follows:  
• FPGA platform: We utilize the Zedboard FPGA development board to implement 

algorithm in Fig. 3. The proposed algorithm is written in the Verilog language, where 
it is implemented in the PL of the FPGA. Then, it is packaged as intellectual property 
(IP) for the PS to connect to using the AXI interface.  
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• Embedded HW: The Jetson Nano is employed and serves as a middleware, connecting 
all sensors and facilitating foveated rendering on the display monitor.  

• Realsense Camera: To capture both color and depth frames, we utilize an Intel 
RealSense D435 sensor. Operating at a resolution of 1280x720 pixels, this sensor serves 
as the visual input source and provides distance measurements through depth frames. 
The resulting data is then visualized through a GUI, offering users visuals to examine 
and rendering a foveated display. 

• Eye-tracking Camera: This camera is employed for capturing the user's pupils and 
pinpointing their gaze location within the rendering viewport of the Realsense camera 
display. Utilizing a deep learning model, SSD-MobilenetV2, enables the detection of 
the pupil and computation of its location. 

• Gyroscope Sensor: A combination of a three-axis accelerometer and a three-axis 
gyroscope was employed for accurate speed computation of head movements. This 
setup is integrated with the eye-tracking camera to facilitate data acquisition and precise 
calculation. 

The selection of these HW implementations is instrumental in evaluating the performance 
of our proposed algorithm. It is important to note that the chosen HW implementations are 
strictly used for evaluation purposes. This decision facilitates a thorough evaluation of its 
efficacy regarding data acquisition, latency, and resource consumption. 

5.2 Experimental Workflow  

Fig. 5 visually demonstrates the connection and communication protocol necessary for 
extracting and manipulating data from each sensor. To execute the grid-based foveated 
rendering algorithm within the PS/PL of FPGA, we followed a well-defined workflow for the 
integrated sensors, as detailed below:  

• All sensors data are acquired by the Jetson Nano through various connections, 
including USB and pin interfaces.  

• The Jetson Nano transmits sensor data via a USB-UART connection, including head 
movement, gaze location, and object distance data formatted in serial. This data is then 
received by the PS of the FPGA. Subsequently, the PS component of the FPGA extracts 
this data and transmits it to the PL using the AXI interface for further processing.  

• Head movement data is utilized to determine the speed of its movement. When 
classified as fast, the grid value changes to one, resulting in a blurred representation of 
the associated image. This occurs because, as humans, our vision naturally blurs when 
our heads move rapidly, making it challenging to perceive details clearly.  

• Object distance primarily determines the total grid count, with fixed intervals ranging 
from 0 to 6000 mm as conditions, influencing the number of grids accordingly.  

• Once the total number of grids, the dimensions of each grid cell are computed in 
accordance with the image width and height. This enables precise localization of the 
foveal grid cell within the visual field.  

• Gaze positions are determined using pixel coordinates to precisely pinpoint the foveal 
grid cell within a specified set of grids. Subsequently, the results are transmitted back 
to the Jetson Nano for processing and rendering. 
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5.3 Experimental Results  

5.3.1 Latency Reduction  

Here, we conducted a comparative analysis between our approach and the conventional non- 
foveated rendering (non-FR) technique. Non-FR involves rendering at full resolution without 
using foveated rendering. Our proposed method showcased a notable decrease in latency, 
highlighting its effectiveness over non-FR approaches. Table 1 compares the average latency 
values across three stages: frame capture, foveated image construction, and foveated rendering 
in the GUI. The most time-consuming stage was foveated image construction, which required 
a significant amount of processing to construct images in real-time. This posed a significant 
challenge on the embedded HW with constrained computing resources. The data retrieval from 
the eye-tracking camera and gyroscope was equally demanding, further burdening the 
computational capacity of the embedded system. Our proposed approach markedly enhances 
efficiency, reducing computational load and end-to-end latency by 15% compared to the non- 
FR approach. In the context of frame capture, it is crucial to understand that images are 
composed of pixels acquired by the depth camera sensor. The average latency per 30 frame 
captures was 23.7ms. This duration provides a comprehensive assessment of system 
performance over a reasonable timeframe, while minimizing the impact of outliers. Regarding 
the foveated image construction latency, the amount of latency depends on the quantity of data 
involved. The non-FR approach requires processing the entire frame to achieve a high image 
quality; this takes longer than foveated rendering, which only generates high-quality pixels in 
the foveal region and reduces the quality in other areas. About foveated rendering latency, the 
constructed frames are then utilized to render a video in a GUI. This stage involves low latency 
due to the data are displayed on the screen immediately upon construction. 
 

Table 1. Comparison of end-to-end latency of our proposed approach with non-FR. 
Stage Our Approach Non-FR 

Frame Capturing 23.7 23.7 
Foveated Construction 117.2 140.7 

Frame Rendering 15.5 17.3 
 

 
We evaluated the latency of our proposed approach by comparing it with the study 

described in [35], known as FoReCast. The end-to-end latency in FoReCast is comprised of 
several sub-components within the framework: (1) at the remote site, which includes the 
processes of data acquisition, ray-casting, conversion, sampling, and encoding; and (2) at the 
user site, encompassing the processes of decoding, conversion, and rendering. Within the 
FoReCast methodology, end-to-end latency was calculated for both office and living room 
scenarios, resulting in average latencies of 287.2ms and 322.8ms, respectively. In contrast, our 
approach, which utilizes predefined grid numbers, significantly reduced the average latency 
to 155.25ms. This marked improvement highlights the superiority of our method, showcasing 
the effectiveness of our adaptive foveated display control approach. Table 2 illustrates that 
even though FoReCast employs significantly superior technology, the latency remains quite 
unacceptable when compared to our approach, which utilizes simpler SW/HW components. 
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Table 2. Framework implementation of our approach and FoReCast. 
SW/HW Components Our Approach FoReCast 

Eye Tracking USB Webcam Tobii Eye Tracking VR 
Headset 

RGB Imaging Intel Realsense 
Camera 

ZED Stereoscopic 
Camera 

User OS and GPU Jetson Nano and 
FPGA 

Windows and GTX 
1080 

Server OS and GPU N/A Ubuntu and Nvidia 
GP104M 

Communication USB, UART, and 
AXI 

Ethernet LAN with 
10Gbit/s Switch 

5.3.2 Grid Size Effect  

The total number of grids was found to have a negligible effect on the end-to-end latency of 
the system. Our experiments showed that a smaller grid number resulted in lower latency 
because larger grids require more processing to extract and blur the relevant portions of the 
video frame. We tested square grids of 2x2, 3x3, 4x4, 5x5, 6x6, and 7x7 to ensure equal 
numbers of rows and columns. As an example for the 5x5 grid, we segmented the video frame 
into 25 distinct portions and classified each as foveal, blended, or other areas. We then applied 
clear and less blur to the foveal and blended areas, respectively, while blurring other areas 
more. Fig. 6 visualizes the influence of the grid size on the overall end-to-end system latency. 
 

 
Fig. 6. The plot displays the latency values measured for six different grid sizes: 4, 9, 16, 25, 36, and 
49. The x-axis represents the grid size while the y-axis represents the measured latency. The markers 

on the plot indicate the recorded values. 
 
 

Fig. 7 shows representative images with different grid sizes. Each image shows the gaze 
location and distance to the object. These representations allow for better understanding of the 
effects of different grid numbers on the foveated rendering process. 
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5.3.3 Resource Usage  

We conducted experiments to evaluate the resource consumption of normal and foveated 
rendering techniques using Jetson Nano. We utilized Jetson Stats to provide real-time 
information on the CPU, GPU, and RAM consumption of the Jetson Nano platform, which is 
displayed on the monitor. This feature enabled efficient monitoring and optimization of the 
system performance. 
 

Table 3. Comparison of resource consumption of our approach and non-FR. 
Components Our Approach Non-FR 

CPU (%) 60.9 61.1 
GPU (%) 64.8 73.5 

RAM (GB) 2.8 2.9 
 

As shown in Table 3, there are slight differences in CPU and RAM usage between foveated 
rendering and normal rendering. Foveated rendering consumes 60.9% of CPU and 2.8GB of 
RAM, compared to 61.1% and 2.9GB, respectively, for normal rendering. More notable 
disparities, however, are evident in GPU and power consumption. Foveated rendering utilizes 
64.8% of GPU resources, marking a decrease of approximately 11.8% compared to the 73.5% 
consumed by non-FR. Although foveated rendering has a minimal impact on CPU and RAM 
usage, it significantly optimizes GPU and power consumption, highlighting its superior 
efficiency in resource utilization. 
 

   
Fig. 7. Application of the proposed foveated rendering technique using different grid sizes to 

determine the level of detail. The system dynamically adjusts the level of detail in different image 
regions based on the user’s gaze, which results in improved visual quality and more efficient 

processing. The red dot on the screen indicates where the user is looking, and the value in millimeters 
indicates the distance between the user’s gaze and the object being viewed. 

(a) 4x4 (b) 5x5 

(c) 6x6 (d) 7x7 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 12, December 2024                      3541 

6. Conclusion 
We proposed an adaptive foveated display controller technique that dynamically modulates 
the image details based on the user’s gaze location. This technique effectively reduces the 
computational demands of high-resolution displays. Our method, which partitions the image 
into grids and selectively renders the high-resolution details in the grid cell that aligns with the 
gaze location, reduces the latency by 15% from those of traditional non-FR rendering methods 
and optimizes the resource consumption. Moreover, our approach is superior compared to 
FoReCast method in terms of end-to-end latency. The evaluation was conducted on the 
embedded HW utilizing FPGA technology. The results demonstrate a substantial reduction in 
the computational resources required by the embedded HW. By implementing our proposed 
approach, the rendering process demonstrates a remarkable improvement of around 11.8% in 
HW resource consumption, when both the embedded HW and FPGA execute the 
corresponding application concurrently. As a result, this capability is applicable across a wide 
range of applications, particularly those requiring precise object localization within a single 
grid cell, such as object detection and robotic hand manipulation. Despite these promising 
results, further advancements should be made. One potential limitation lies in the adaptability 
of our technique across different HW configurations. While we have demonstrated its efficacy 
within controlled settings, variations in device capabilities, display resolutions, and tracking 
systems may affect its performance in practical applications. In future research, we will 
integrate our algorithm into more powerful and diverse embedded HW systems, which will 
potentially benefit VR applications, advanced telecommunication systems, and other sectors 
reliant on immersive technologies. However, we understand that the effectiveness of our 
technique may vary depending on the specific application context. While we have 
demonstrated its utility in certain scenarios, there may be constraints or requirements in other 
domains that limit its practicality or efficacy. With continuous refinement and application, 
foveated rendering techniques such as the proposed technique can potentially enhance display- 
system performance and resource utilization, increasing the accessibility and efficiency of 
advanced visual experiences. 
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